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The selective activation and functionalization of C-F bonds in
the commercially available polyfluorobenzenes is an attractive goal
because of potential use of these compounds as starting materials
for pharmaceuticals and agrochemicals containing partially fluori-
nated aromatic groups.1,2 The difficulties associated with the
oxidative addition of C-F bonds is similar to those encountered
with C-H bond activation,3 due in large part to the strength of the
C-F bond. However, the selective activation of C-F bonds in the
presence of C-H bonds generates additional issues, because many
second and third row late transition metal complexes that are
capable of the oxidative addition of C-F bonds display lower
activation barriers for C-H bond oxidative addition.4,5 Thus, despite
the efficacy of these heavier metals in the activation of perfluori-
nated aromatic substrates, they are of no utility with more
synthetically useful substrates such as penta-, tetra-, tri- and
difluorobenzene. Although this difficulty has been bypassed in a
few cases by utilizing metal complexes that react with aromatic
substrates via electron transfer or nucleophilic mechanisms,6 these
complexes produce activation products which cannot be con-
veniently incorporated into catalytic cycles.

The relatively low cost of nickel provides an impetus for its use
in lieu of its heavier congeners, and the potential of nickel(0)
complexes in C-F bond activation and catalytic functionalization
have been investigated extensively.7,8 It has been shown via
calculation that the oxidative addition of C-H bonds in C6H6 to a
bis(phosphine)nickel(0) moiety is thermodynamically disfavored by
∼18 kcal ·mol-1, whereas C-F bond activation in C6F6 is favored.9

In principle, this should allow for selective activation in a range of
polyfluoroaromatics, but to date the selective activation of C-F
bonds using nickel complexes has been limited to perfluorinated
aromatics and nitrogen containing heterocycles. The reaction of
(PEt3)4Ni with pentafluorobenzene is reported to produce a mixture
of products,8 while no reactions with the tetrafluorobenzenes have
been described.

The sodium reduction of Br2Ni(PEt3)2 in the presence of
phenanthrene provides a synthon for the unisolable Ni(PEt3)2

moiety, (PEt3)2Ni(η2-C14H10) (1).10 Complex 1 has been character-
ized by X-ray crystallography and NMR spectroscopy; details are
provided in the Supporting Information. Mixtures of 1 and 1-10
equiv 1,2,4,5-tetrafluorobenzene in pentane, d8-toluene, C6D6 or
THF all react over weeks to provide C-F bond activation products;
however, immediate characterization of these solutions revealed
an initial equilibrium producing the unexpected C-H bond activa-
tion product, (PEt3)2NiH-2,3,5,6-F4C6H, 2, as shown on the top of
Scheme 1. As expected for an equilibrium, the addition of
phenanthrene decreased the concentration of 2 and the addition of
1,2,4,5-tetrafluorobenzene increased the concentration of 2, as
monitored by 19F NMR spectroscopy.

A representative reaction between 1 and 2 equiv 1,2,4,5-
tetrafluorobenzene in d8-toluene is described; similar results were
obtained irrespective of solvent or equivalents of 1,2,4,5-
tetrafluorobenzene utilized. The 19F NMR spectrum of this
mixture featured second order multiplets at δ -117.8 and -143.7
for the small equilibrium amount of complex 2. In the 298 K
1H NMR spectrum a broad triplet was observed at δ -14.3, as
anticipated for a nickel hydride complex.11,12 Upon cooling to
233 K this broad resonance sharpened and could be modeled as
a multiplet with couplings to two 31P nuclei, two o-fluorine, and
two m-fluorine substituents. The relatively large 2JPH value of
67.7 Hz is diagnostic of a bis(phosphine)nickel hydride frag-
ment,11 and the remaining couplings identify the complex as 2.
The 298 K 31P{1H} NMR spectrum featured broad resonances
for 1 and 2 at δ 18.1 and 23.5, respectively. Cooling the solution
to 233 K resulted in the sharpening of these resonances in the
31P{1H} NMR spectrum, and in the 1H coupled 31P NMR
spectrum the peak at δ 23.5 was a doublet with a 68 Hz coupling
to the hydride.

The broad 1H hydride and 31P{1H} NMR resonances at 298
K are indicative of a fluxional exchange, and a 19F EXSY
spectrum with a mixing time of 0.5 s revealed positively phased
cross peaks between the 1,2,4,5-tetrafluorobenzene peak and the
19F resonances of 2. Further evidence for the reversible nature
of this C-H bond activation over a range of temperatures was
obtained by the reaction a d8-toluene solution of 1 and 2 equiv
of monodeuterated 1,2,4,5-tetrafluorobenzene, which was ana-
lyzed by 1H and 19F and 31P{1H} NMR spectroscopy. Signals
were observed for equilibrium amounts of the C-H and C-D
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activation products 2a and 2b, shown in Scheme 2. An expansion
of the hydride region at 233 K is shown on the left side of Figure
1 and displays couplings and shifts identical to 2. Expansions
of the AA′MM′ spin system signals of this equilibrium species
in the 273 K 19F and 19F{1H} NMR spectra are shown on the
right side of Figure 1. These appear at δ -118.0 for the
overlapping o-fluorine resonances of 2a and 2b, whereas the
resolved resonances for the m-fluorines of 2a and 2b appear at
δ -144.1 and -143.8, respectively. This shift of ∼0.3 ppm for
fluorine nuclei adjacent to H versus D is typical for fluorinated
aromatics. The 19F NMR spectrum also exhibits the appropriate
couplings to the hydridic 1H; the Fortho resonance associated with
2a exhibits a 4JFH of 9.5 Hz and the Fmeta resonance associated
with 2a exhibits a 5JFH of 4.2 Hz, consistent with the 1H NMR
spectral data. Additionally, a 3JFH of 9.3 Hz is observed between
the aromatic hydrogen and the Fmeta resonance associated with
2b. The temperature dependence of the integration of m-fluorine
resonances for 2a and 2b reveals that this C-H bond oxidative
addition is in kinetic equilibrium near room temperature. The
oxidative addition shown in Scheme 2 favors 2a over 2b, due
to the zero-point energy difference between carbon-H/D and
nickel-H/D bonds. At 298 K, the ratio of the integrals of these
peaks is 2.1:1. Cooling to 233 K gradually changes this ratio to
3.4:1. At temperatures lower than 233 K this reaction is slowed
sufficiently that the ratio of 2a to 2b does not change noticeably
within an hour. The 31P {1H} NMR spectrum at 233 K featured
a broad 1:1:1 triplet at 23.8 with a 2JPD of ∼10 Hz for 2b and
a singlet at 23.5 for 2a.

Over the course of 2 weeks these mixtures gradually convert
to C-F bond activation products and the concentration of 2
decreases as 1 is consumed. Despite the presence of a single
fluorine chemical environment in 1,2,4,5-tetrafluorobenzene,
these reactions provide a mixture of three C-F bond activation
products and 1,2,4-trifluorobenzene, as shown in Scheme 1.
Monitoring the reaction by 19F{1H} NMR spectroscopy, (PEt3)2NiF-
2,4,5-F3C6H2 (3) is the only C-F activation product observed
at low conversion, typically within the first 8 h, with three

aromatic multiplets at δ -93.4, -145.4, and -146.6, as well as
a Ni-F environment at δ -378.5, which is a triplet of doublets
due to coupling to two equivalent 31P environments (2JPF ) 48.8
Hz) and a single o-F (2JFF ) 10 Hz). Complex 3 displays a
doublet 31P{1H} resonance at δ 12.1. As the reaction proceeds,
two other unanticipated C-F bond activation products are
observed. One product, which has 19F resonances at δ -119.2,
-143.2, and -390.1, the latter of which is a triplet of triplets
due to coupling to two 31P environments and two o-fluorine
substituents, can be identified as (PEt3)2NiF-2,3,5,6-F4C6H (4).
Complex 4 features a doublet in the 31P{1H} NMR at δ 13.6
with a 2JPF value of 46.5 Hz. This assignment was verified by
an alternate synthesis of 4 via the oxidative addition of 1-bromo-
2,3,5,6-tetrafluorobenzene to Ni(COD)2 in the presence of PEt3

to generate (PEt3)2NiBr-2,3,5,6-F4C6H, followed by reaction with
tetrabutylammonium fluoride hydrate. The second unexpected
product is (PEt3)2NiF-2,3,5-F3C6H2 (5), with 19F resonances at
δ -119.9, -121.3, -137.6, and -379.6, the latter of which
features coupling to two 31P nuclei and a single o-fluorine. The
31P{1H} NMR signal appears at δ 12.6 with a 2JPF value of 48.0
Hz. This assignment was verified by the reaction of 1,2,3,5-
tetrafluorobenzene with 1, shown in Scheme 3, which produces
5 as an isolable major product, but also features 3 as ∼3% of
the C-F bond activation products, by integration of the aromatic
19F resonances. Complex 5 was characterized by X-ray crystal-
lography and details are presented in the Supporting Information.
DFT calculations predict that isomer 5 is only slightly lower in
energy than 3, thus the conversion of 5 to small amounts of 3 is
thermodynamically viable, despite the observation of the mi-
croscopic reverse reaction with 1,2,4,5-tetrafluorobenzene.

The major product in the reaction of 1,2,4,5-tetrafluorobenzene
and 1 depends on reaction conditions, but appears to thermo-
dynamically favor the formation of 4. For example, the addition
of an excess of phenanthrene to the initial reaction mixtures
slows the reaction and yields 4 and 1,2,4-trifluorobenzene as
the major products. The thermodynamic preference of 4 over 3
can be rationalized by the increased Ni-C bond strength as the
number of o-F substituents is increased.4

Scheme 4 depicts a viable mechanism for the formal
hydrodefluorination2,13 that results in the formation of 4 and
1,2,4-trifluorobenzene. The initial C-H bond activation product
2 is formed rapidly and is present in equilibrium with 1
throughout the reaction. The initial C-F bond activation product
3 is formed at a much slower rate and reacts with the equilibrium
amounts of 2 via transmetalation, which exchanges the fluoride
and hydride ligands to produce 4 and a new nickel hydride
complex, 6.14 The exact mechanism for this reaction is unknown
due to the paucity of data regarding the reactivity of bis(phos-
phine)nickel aryl hydrides, but it likely involves a binuclear
intermediate.15 Species 6 was not observed because it can rapidly
reductively eliminate a C-H bond to produce 1,2,4-trifluoroben-
zene. Complex 5 could be formed by a similar C-H bond
activation mechanism starting with 1,2,4-trifluorobenzene, al-

Scheme 2

Figure 1. Hydridic signal in the 233 K 1H NMR spectrum with modeled
spectrum shown above (left) and selected peaks in the 273 K 19F and 19F{1H}
NMR spectra for an equilibrium amount of 2a and 2b prepared from a
mixture of 1 and 1,2,4,5-F4C6HD. Chemical shifts are in ppm and 19F shifts
are with respect to CFCl3.

Scheme 3
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though it is impossible to rule out other mechanisms,16 such as
the reversible deprotonation of the ortho hydrogen in 3, which
could convert 3 to 5 via a nickel aryne intermediate.17

These results provide insight into the steps required to utilize
these C-F bond activations into catalytic cycles; to generate
Ni catalysts for selective C-F bond functionalization in a wide
range of polyfluoroaromatics it will be necessary to alter the
choice of ancillary ligands to render C-F bond oxidative addition
significantly faster than ligand redistribution reactions, thus
avoiding unwanted byproducts that result from C-H bond
activation. Equally importantly, these low activation barrier C-H
bond activations could be exploited to extend the scope of Ni(0)
C-H bond activation and catalytic functionalization18 to include
polyfluoroaromatics19 and other weakly activated substrates,20

even when C-H bond activation products are thermodynamically
disfavored but kinetically accessible. Research toward both these
goals is currently underway.21
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